Sum-Product and Character Sums in finite fields
نویسندگان
چکیده
In this talk I will present estimates on incomplete character sums in finite fields, with special emphasize on the non-prime case. Some of the results are of the same strength as Burgess celebrated theorem for prime fields. The improvements are mainly based on arguments from arithmetic combinatorics providing new bounds on multiplicative energy and an improved amplification strategy. In particular, we improve on earlier work of Davenport-Lewis and Karacuba.
منابع مشابه
Bilinear Character Sums and Sum–product Problems on Elliptic Curves
Let E be an ordinary elliptic curve over a finite field Fq of q elements. We improve a bound on bilinear additive character sums over points on E, and obtain its analogue for bilinear multiplicative character sums. We apply these bounds to some variants of the sum–product problem on E.
متن کاملSum-product Estimates in Finite Fields via Kloosterman Sums
We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.
متن کاملBilinear Exponential Sums and Sum-Product Problems on Elliptic Curves
Let E be an ordinary elliptic curve over a finite field IFq of q elements. We improve a bound on bilinear additive character sums over points on E, and obtain its analogue for bilinear multiplicative character sums. We apply these bounds to some variants of the sum-product problem on E. 2000 Mathematics Subject Classification: Primary 11G05, 11L07, 11T23
متن کاملHermite Character Sums
This evaluation proves a conjecture in [9, p. 370] and solves the problem of finding explicitly the number of rational points (mod/?) on the surface z = (x + l)(y + ΐ)(x + y), a problem some algebraic geometers had worked on without success. Character sum analogues of the important formulas for orthogonal polynomials are potentially as useful as those for hypergeometric series, so a systematic ...
متن کاملar X iv : m at h / 06 09 42 6 v 3 [ m at h . C O ] 1 5 O ct 2 00 6 SUM - PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN
We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.
متن کامل